Morphology and N₂ Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes.

نویسندگان

  • Ekain Fernandez
  • Jose Angel Sanchez-Garcia
  • Jose Luis Viviente
  • Martin van Sint Annaland
  • Fausto Gallucci
  • David A Pacheco Tanaka
چکیده

The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from 120 to 250-270 nm and film surface roughness from 4-5 to 10-12 nm when increasing the temperature from around 360-510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5-2-µm thick) films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO₂ 3-nm top layer supports (smallest pore size among all tested) present high N₂ permeance in the order of 10(-6) mol·m(-2)·s(-1)·Pa(-1) at room temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Poly(ether-6-block amide)/PVC Thin Film Composite Membrane for CO2 Separation: Effect of Top Layer Thickness and Operating Parameters

In this work, novel thin film composite membranes (TFCs) of poly (ether-6-block amide) (Pebax-1657) on a polyvinyl chloride (PVC) ultrafiltration membrane as support were prepared using inclined coating method for CO2 separation. Investigating the effects of top selective layer thickness formed by controlling the coating angle (15-60°) and polymer solution concentration (5-10 wt.%), ...

متن کامل

Anionic/Non-ionic Surfactants in Aqueous Phase of Thin Film Composite Poly(Paraphenylene Terephthalamide) Nanofiltration Membranes

In this work, the Interfacial interfacial polymerization (IP) technique was employed using terephthaloyl chloride (TPC) and p-phenylenediamine (PPD), as reactant monomers, to prepare poly(paraphenylene terephthalamide) thin film composite (TFC) nanofiltration on polyethersulphone (PES) support layer. The effects of six different anionic and non-ionic surfactants, in the aqueous phase on the mor...

متن کامل

Characterization of nanostructured SnO2 thin film coated by Ag nanoparticles

Nanostructured SnO2 thin films were prepared using Electron Beam-Physical Vapor Deposition (EB-PVD) technique. Then Ag nanoparticles synthesized by laser-pulsed ablation were sprayed on the films. In order to form a homogenous coated of SnO2 on the glass surface, it was thermally treated at 500°C for 1 h. At this stage, the combined layer on the substrate was completely dried for 8 h in the air...

متن کامل

Fabrication of Thin Palladium-Silver Alloy Film by Using Electroplating Technique

A thin Pd-Ag alloy film, which will be applied to fabricate membranes for hydrogen separation, was successfully deposited using an electroplating technique. The plating solution for the formation of a thin Ag-rich Ag-Pd film for electric contact consisted of PdCl2, AgNO3, HBr, and HNO2. An improvement of the electrolytic bath was achieved by a pH control, which was kept constant at 6.6 and by t...

متن کامل

Zwitterion Embedded Thin Film Composite Membrane for Oily Wastewater Treatment

The recent development in oil and gas industry increases the production and consumption of oil. The enormous amount of oily wastewater produced is urged to be treated to prevent humanity and environment from being threatened. Membrane technology is an appealing alternative for oily wastewater treatment due to its design simplicity, energy efficiency and environmentally benign approach. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2016